Advanced Algorithms

September 30, 2025

Logistics

- Assignment 1 done
 - Good job!
 - Grades published on gradescope
 - Will go through some things

- Exercise set 2
 - Due next Tuesday in class. Available now on course webpage
 - Opportunity for course feedback!

Previously . . . on Advanced Algorithms

Fundamental Problems in P

Up Next: Linear Programming

• A very general problem in P. Already models many problems

- Used as a subroutine in modern algorithm design
 - Approximation Algorithms
 - Online Algorithms

• An expressive language for all optimization problems

Example: Farmer

- A farmer is trying to decide which crops to plant on her 60 acres of land.
- She can plant either wheat or corn:
 - Each acre planted with wheat can be sold later for \$200 profit
 - Each acre planted with corn yields \$300 profit
- Planting requires labor and fertilizer:
 - Each wheat acre needs 3 hours of labor and 2 tons of fertilizer
 - Each corn acre needs 2 hours of labor and 4 tons of fertilizer
- She only has 100 hours and 120 tons of fertilizer available.
- How many acres of wheat and corn to plant if we want to maximize sales?

Farmer's LP

Maximize 200 x + 300 y

Subject to

```
3x + 2y \le 100 (hours of work available)

2x + 4y \le 120 (fertilizer constraint)

x + y \le 60 (can't plant too many acres)

x \ge 0

y \ge 0 (non-negativity)
```

Realistic?

How to solve the LP?

• I will do this by hand . . . once

• (you will too on the Exercise set)

Non negative part of the plane

Max
$$200x + 300y$$

s.t. $3x + 2y \le 100$ (labor)
 $2x + 4y \le 120$ (fertilizer)
 $x + y \le 60$ (acres)
 $x \ge 0$
 $y \ge 0$

First constraint drawn as an equality

Max
$$200x + 300y$$

s.t. $3x + 2y \le 100$ (labor)
 $2x + 4y \le 120$ (fertilizer)
 $x + y \le 60$ (acres)
 $x \ge 0$
 $y \ge 0$

Feasible region for the first constraint

Max
$$200x + 300y$$

s.t. $3x + 2y \le 100$ (labor)
 $2x + 4y \le 120$ (fertilizer)
 $x + y \le 60$ (acres)
 $x \ge 0$
 $y \ge 0$

Second constraint drawn as an equality

Max
$$200x + 300y$$

s.t. $3x + 2y \le 100$ (labor)
 $2x + 4y \le 120$ (fertilizer)
 $x + y \le 60$ (acres)
 $x \ge 0$
 $y \ge 0$

Feasible region for the second constraint

Max
$$200x + 300y$$

s.t. $3x + 2y \le 100$ (labor)
 $2x + 4y \le 120$ (fertilizer)
 $x + y \le 60$ (acres)
 $x \ge 0$
 $y \ge 0$

Intersection of the two feasible regions

Max
$$200x + 300y$$

s.t. $3x + 2y \le 100$ (labor)
 $2x + 4y \le 120$ (fertilizer)
 $x + y \le 60$ (acres)
 $x \ge 0$
 $y \ge 0$

Third constraint drawn as an equality

Max
$$200x + 300y$$

s.t. $3x + 2y \le 100$ (labor)
 $2x + 4y \le 120$ (fertilizer)
 $x + y \le 60$ (acres)
 $x \ge 0$
 $y \ge 0$

Feasible region for the third constraint

Max
$$200x + 300y$$

s.t. $3x + 2y \le 100$ (labor)
 $2x + 4y \le 120$ (fertilizer)
 $x + y \le 60$ (acres)
 $x \ge 0$
 $y \ge 0$

Intersection of the three feasible regions

Max
$$200x + 300y$$

s.t. $3x + 2y \le 100$ (labor)
 $2x + 4y \le 120$ (fertilizer)
 $x + y \le 60$ (acres)
 $x \ge 0$
 $y \ge 0$

Bounded feasible region

Feasible Solution

Infeasible solution

x = 20y = 20

Optimal solution for
$$max 200x + 300y$$

x + y = 60

Optimal solution for $\max 200x + 300y$

3x + 2y = 100

Tight constraints

Max
$$200x + 300y$$

s.t. $3x + 2y \le 100$ (labor)
 $2x + 4y \le 120$ (fertilizer)
 $x + y \le 60$ (acres)
 $x \ge 0$
 $y \ge 0$

Graphical method is trash

- Only really works in ~2 dimensions.
- In general: decision variables x_1, x_2, \dots, x_n

$$ext{max/min} \quad r_1x_1 + r_2x_2 + r_3x_3 + \cdots + r_nx_n$$
 subject to $a_1x_1 + a_2x_2 + a_3x_3 + \cdots + a_nx_n \leq u$ \vdots $b_1x_1 + b_2x_2 + b_3x_3 + \cdots + b_nx_n \geq v$ \vdots $c_1x_1 + c_2x_2 + c_3x_3 + \cdots + c_nx_n = w$ \vdots

Solving LP

- Theorem [Dantzig 1947]:
 - Finite algorithm (Simplex method). Not polynomial, but fast in practice

- Theorem [Khachiyan 1979]:
 - LP can be solved in polynomial time in m, n, and L (Ellipsoid method).

• • •

Later: Karmarkar, Von Neumann etc.

Your turn

Group up

- Create a Linear Program with:
 - At least 4 variables
 - At least 5 constraints

• The optimal value of your LP is your score, as long as it's a valid percentile between 0 and 100.

Modeling Power

Linear constraints

$$3x + 4y \le 120$$

 $x_1 - x_2 = 0$
 $10x_1 + 20x_2 + 30x_3 \ge 150$

Nonlinear constraints

$$3x + 4y < 120$$

 $4xy = 10$
 $(3x+4y)/(x+y) \le 3.5$ <- Can be linearized